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ABSTRACT: In this paper we study the problem of compute the solution of a linear system in a separable representation
form. It arises in the discretized equations appearing in various physical domains, such as kinetic theory, statistical
mechanics, quantum mechanics, and in nanoscience and nanotechnology among others. In particular, we use the fact
that tensors of order 3 or higher have best rank-1 approximation. This fact allow to us to propose an iterative method
based in the so-called by the signal processing community as the Matching Pursuit Algorithm, also known as Projection
Pursuit by the statistics community or as a Pure Greedy Algorithm in the approximation theory community. We also
give some numerical examples and describe its relationship with the Finite Element Method for High-Dimensional Partial
Differential Equations based on the tensorial product of one-dimensional bases. We illustrate this situation taking as a
model problem the multidimensional Poisson equation with homogeneous Dirichlet boundary condition.
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1 INTRODUCTION
In [1], some of the authors of the present paper propose the
use of a separated representation, which allows to define
a tensor product approximation basis as well as to decou-
ple the numerical integration of a high dimensional model
in each dimension. The purpose of this work is to for-
malize and analyze the above strategy in the framework
of the iterative methods for linear systems. As we will
show the aproximation given in [1], is closely related with
the best low-rank approximation problem for high order
tensors. Unfortunately, it has been proved that tensors of
order 3 or higher can fail to have best rank-r approxima-
tion for r ≥ 2. It is due to the fact that, in our knowledge,
only for a given closed and nonempty set contained in R

N

it is possible to define a (perhaps) multivalued projection
of a point into this set. We remark that the unicity for
this map can be obtained by adding a convexity condition.
Our strategyis to use the fact that tensors of order 3 or
higher have best rank-1 approximation. Then we propose
an iterative method based in the so-called by the signal
processing community as the Matching Pursuit Algorithm
of Mallat and Zhang, also known as Projection Pursuit by
the statistics community or as a Pure Greedy Algorithm
in the Approximation Theory community. This strategy
depends strongly on the computation of the best rank-1
approximation of the residual obtained at each step of the
proposed algorithm. To solve this we will propose the
use of a Coordinate Descend Method Algorithm because
it has global convergence. In particular, we will show that
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for the class of separable invertible matrices, this prob-
lem collapses for each selected direction to an ordinary
least-squares problem. Finally, we introduce the relation-
ship between the Finite Element Method, where the shape
functions are the tensorial product of a one-dimensional
ones, and the class of linear systems considered in this
paper. We illustrate this situation taking as a model prob-
lem the multidimensional Poisson equation with homoge-
neous Dirichlet boundary condition.

Before to end this section we describe some of the nota-
tion used in this paper. We denote the set of N × M -
matrices by R

N×M , and the transpose of a matrix A is
denoted AT . By 〈x,y〉 we denote the usual Euclidean in-
ner product given by xT y = yT x and its correspond-
ing 2-norm, ‖x‖2 = 〈x,x〉1/2. The matrix IN is the
N × N -identity matrix and when the dimension is clear
from the context, we simply denote it by I. Given a se-
quence {uj}∞j=0 ⊂ R

N , we say that a vector u ∈ R
N can

be written as

u =

∞∑

j=0

uj

if and only if

lim
n→∞

n∑

j=0

uj = u

holds in the ‖ · ‖2-topology. Now, we recall the defini-
tion and some properties of the Kronecker product. The
Kronecker product of A ∈ R

N ′
1
×N1 and B ∈ R

N ′
2
×N2 ,

written A⊗K B, is the tensor algebraic operation defined
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This paper is organized as follows. In the next section
we give a separated representation algorithm for a class of
linear systems. It is motivated by the main result of this
paper that gives a solution to the problem of construct-
ing an approximate solution of rank-n for a linear sys-
tem. Moreover, we provide some numerical examples. In
3 we give as a model problem the multidimensional Pois-
son equation with homogeneous Dirichlet boundary con-
ditions. We conclude with some comments and remarks.

2 DEFINITIONS AND STATEMENT OF
MAIN RESULT

The concept of separated representation was introduced
by Beylkin and Mohlenkamp and it is related with the
problem of constructing the approximate solutions of
some classes of problems in high-dimensional spaces by
means a separable function.
Suppose that for given a linear Partial Differential Equa-
tion, and after a discretization by means Finite Elements,
we need to solve the linear system

Au = f , (1)

where A is a (N1 · · ·Nd) × (N1 · · ·Nd)-dimensional in-
vertible matrix, for some N1, N2, . . . , Nd ∈ N. Then from
all said above, it seems reasonable to find an approximate
solution

A−1f ≈ un =
n∑

j=1

x
j
1 ⊗K · · · ⊗K x

j
d

for some n ≥ 1 and where x
j
i ∈ R

Ni for i = 1, 2, . . . , d
and j = 1, 2, . . . , n; satisfying that

lim
n→∞

∥∥A−1f − un

∥∥
2

= 0,

that is,

A−1f =
∞∑

j=1

x
j
1 ⊗K · · · ⊗K x

j
d.

For each n ∈ N, we define the set

Sn = {x ∈ R
N1···Nd : rank⊗K

x ≤ n},

in the following way. Given x ∈ R
N1···Nd we say that x ∈

S1 = S1(N1, N2, . . . , Nd) if x = x1⊗Kx2⊗K · · ·⊗Kxd,
where xi ∈ R

Ni , for i = 1, . . . , d. For n ≥ 2 we define
inductively Sn = Sn(N1, N2, . . . , Nd) = Sn−1+S1, that
is,

Sn =

{
x : x =

k∑

i=1

x(i), x(i) ∈ S1 for 1 ≤ i ≤ k ≤ n

}
.

Note that Sn ⊂ Sn+1 for all n ≥ 1.
It is possible to show that given an invertible matrix A ∈
R

N1N2···Nd×N1N2···Nd , then for each fixed b ∈ R
N1···Nd

we obtain that

argminx∈S1
‖b−Ax‖2 6= ∅. (2)

This allow to consider the following iterative scheme. Let
u0 = y0 = 0, and for each n ≥ 1 we take

rn−1 = f −Aun−1, (3)

un = un−1 + yn

where yn ∈ argminy∈S1
‖rn−1 −Ay‖2.

}
(4)

Note that un ∈ Sn. Define

k(f , A) =

{
∞ if {j ≥ 1 : yj = 0} = ∅,
min{j ≥ 1 : yj = 0} − 1 otherwise.

The following theorem which provides a constructive ap-
proach to represent the solutions of a linear system in a
separated form.

Theorem 1 Let f ∈ R
N1N2···Nd and A ∈

R
N1N2···Nd×N1N2···Nd , be an invertible matrix. Then,

by using the iterative scheme (3)-(4), we obtain that the
sequence {‖rn‖2}

k(f ,A)
n=0 , is strictly decreasing and

A−1f = lim
n→∞

un =

k(f ,A)∑

j=0

yj . (5)

Moreover, the rate of convergence if given by

‖rn‖2
‖r0‖2

=

n∏

j=1

(1− ρ2
j)

1/2 (6)

for 1 ≤ n ≤ k(f , A) where

ρj =
〈rj−1, Ayj〉

‖rj−1‖2‖Ayj‖2
∈ (0, 1)

for 1 ≤ j ≤ n.

From (5) we obtain that if k(f , A) < ∞, then ‖rn‖2 = 0
for all n > k(f , A). Thus, the above theorem allow to us
to construct a procedure, that we give in the pseudocode
form in Algorithm 1, under the assumption that we have a
numerical method in order to find a y solving (2) (see the
step 5 in Algorithm 1) and that we introduce below.
It can be seen that for each fixed b ∈ R

N1···Nd , the
map Φ(x) = ‖b − Ax‖2 defined over a convex set
U ⊂ R

N1···Nd is a convex function. Since S1 is not a
convex set we will consider for each α ∈ {1, 2, . . . , d}
and

x0
1, . . . ,x

0
α−1,x

0
α+1, . . . ,x

0
d

fixed, the set

S
(α)
1 = S

(α)
1 (x0

1, . . . ,x
0
α−1,x

0
α+1, . . . ,x

0
d)

=
{
x ∈ S1 : xi = x0

i , i 6= α
}

.
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Algorithm 1 A Separated Representation Algorithm

1: procedure (‖f − Au‖2 < ε : rank⊗u ≤
rank_max)

2: r0 = f

3: u = 0

4: for i = 0, 1, 2, . . . ,rank_max do
5: y = procedure (minrank⊗x≤1 ‖ri −Ay‖22)
6: ri+1 = ri −Ay

7: u← u + y

8: if ‖ri+1‖2 < ε or |‖ri+1‖2 − ‖ri‖2| < tol
then goto 13

9: end if
10: end for
11: return u and ‖rrank_max‖2.
12: break
13: return u and ‖ri+1‖2
14: end procedure

Since S(α)
1 ⊂ S1 ⊂ R

N1···Nd is a closed and convex set,
this fact allow to us to solve

min
x∈S1

‖b−A (x1 ⊗K · · · ⊗K xd)‖2 , (7)

by means a Cyclic Coordinate Descend Algorithm. It
minimizes Φ cyclically with respect to the coordinate vari-
ables and it can shown that it has global convergence.
These cyclic methods have the advantage of not requir-
ing any information about the gradient∇xΦ to determine
the descent directions. However, their convergence prop-
erties are poorer than steepest descend methods. These
coordinate descent methods are attractive because of their
easy implementation in some particular cases as we will
see below. In particular we minimize Φ cyclically with
respect to the coordinate variables. We point out that for
high-dimensional problems the numerical implementation
of solving that equation can be a hardly task. However, if
the matrix A can be represented also in separated repre-
sentation form, then it can be reduced to a standard least
squares problem. Thus, we can solve

min
(x1,...,xd)

∥∥∥∥∥b−
rA∑

i=1

Ai
1x1 ⊗K · · · ⊗K Ai

dxd

∥∥∥∥∥
2

. (8)

easily, by means a Cyclic Coordinate Descend Algorithm.
Note that given a point (x1, . . . ,xd), descend with respect
to the coordinate xα means under this conditions that

(ZT
α Zα)−1ZT

α b ∈ arg min
xα

Φ(x1, . . . ,xd). (9)

The pseudocode of the procedure to solve (8) can be seen
in Algorithm 2.

3 A MODEL PROBLEM: THE POISSON
EQUATION IN (0, 1)D

Firstly, we consider the following problem in 3D: Solve
for

(x1, x2, x3) ∈ Ω = (0, 1)3 :

Algorithm 2 Solving the minimization problem (8)

1: procedure (minx∈S1
‖b−Ax‖22)

2: Initialize x0
i for i = 1, 2 . . . , d.

3: iter = 1
4: while iter < iter_max do
5: x̂α ← x0

α, α = 1, . . . , d
6: for α = 1, 2, . . . , d do
7: Zα =

∑rA

j=1 Zj
α ⊲

Zj
α = A

(j)
1 x̂1 ⊗K · · · ⊗K A

(j)
α−1x̂α−1 ⊗K A

(j)
α ⊗K

A
(j)
α+1x

0
α+1 · · · ⊗K A

(j)
d x0

d

8: x̂α = (ZT
α Zα)−1ZT

α b

9: end for
10: if

∏d
α=1 ‖x

0
α − x̂α‖2 < tol then goto 14

11: end if
12: iter = iter+ 1
13: end while
14: return x0 = (x0

1, . . . ,x
0
d)

15: end procedure

−∆u = (2π)2 · 3
3∏

i=1

sin(2πxi − π),

u|∂Ω = 0,

which has as closed form solution

u(x1, x2, x3) =

3∏

i=1

sin(2πxi − π).

We used the separable representation algorithm given
in Section 2 with parameter values iter_max = 5,
rank_max = 1000 and ε = 0.001. The algorithm give
us an approximated solution u1 ∈ S1. In Figure 1 we
represent the relative error of the solution computed using
the separable representation algorithm, using logarithmic
scale, as a function of the number of nodes used in the
discretization of the Poisson equation. All the computa-
tions were performed using the GNU software OCTAVE

in a AMD 64 Athlon K8 with 2Gib of RAM.
In Figure 2 we represent the CPU time, in logarithmic
scale, used in solving the linear system against the sep-
arable representation algorithm. In both cases all the lin-
ear systems involved were solved using the standard linear
system solver (A\b) of OCTAVE.
Finally we are addressing some highly multidimensional
models. To this end we solve numerically the Poisson
equation for (x1, . . . , xd) ∈ Ω = (0, π)d where

f =

d∑

k=1

−(1 + k) sin(−1+k)(xk)×

(
−k cos2(xk) + sin2(xk)

) d∏

k′=1,k′ 6=k

sin(1+k′)(xk′ ),

which has as closed form solution

u(x1, . . . , xd) =

d∏

k=1

sin(k+1)(xk).
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-scale.

Here we consider the true solution u given by Ui1,...,id
=

u(x̂i1+1, . . . , x̂id+1). For d = 10 we use the param-
eter values iter_max = 2, rank_max = 10 and
ε = 0.001. In a similar way as above the algorithm give us
an approximated solution û ∈ S1. In Figure 3 we repre-
sent the absolute error ‖û−u‖2 as a function of h = π/N
for N = 5, 10, 20, . . . , 160 in log10-scale. By using sim-
ilar parameters values the problem has been solved for
d = 100 in about 20 minutes.

4 CONCLUDING REMARKS
In this paper we analyze, at analytical level, the iterative
method proposed in [1] in order to compute the numeri-
cal solutions of high dimensional PDE’s. As we can show
the method runs under very weak conditions, recall that
we only use the condition that the linear system has a de-
composable and invertible matrix. However, its efficiency
depends strongly on the matrix form (symmetric, tridiag-
onal, full, sparse, ...).
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